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Abstract. This paper presents a numerical study of the micro- and macro-dynamic behavior of the unsteady-state
granular flow in a cylindrical hopper with flat bottom by means of a modified discrete-element method (DEM)
and an averaging method. The results show that the trends of the distributions of the microscopic properties such
as the velocity and forces, and the macroscopic properties such as the velocity, mass density, stress and couple
stress of the unsteady-state hopper flow are similar to those of steady-state hopper flow, and do not change much
with the discharge of particles. However, the magnitudes of the macroscopic properties in different regions have
different rates of variation. In particular, the magnitudes of the two normal stresses vary little with time in the
orifice region, but decrease in other regions. The magnitude of the shear stress decreases with time when far from
the bottom wall and central axis of the hopper. The results also indicate that DEM can capture the key features
of the granular flow, and facilitated with a proper averaging method, can also generate information helpful to the
test and development of an appropriate continuum model for granular flow.
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1. Introduction

Granular materials are quite common in nature and in industry, appearing as, for example,
sands, soil, cement, grains, chemical powders, coal, mineral rocks and so on. The study of the
fundamentals of these kinds of materials is essential in order to generate a method for solving
a wide range of scientific and technological problems in various fields [1,2]. Computer simu-
lation provides a cost-effective alternative to physical experimentation to achieve this goal.

In general, granular material is a discrete system whose physical properties are discontin-
uous with respect to position and time. Therefore, it can be described by a discrete model
on an individual particle scale, which can generate detailed information about the micro-
dynamic behavior of the granular material. A major type of discrete model is based on the
so-called Discrete Element Method (DEM) originally proposed by Cundall and Strack [3]. In
the method, the motion of every particle is traced and the gradients of translation and rota-
tion of a particle are determined in terms of the forces and the torques exerted on it. DEM-
based simulation has been recognized as an effective method to study the fundamentals of
granular materials [4–9].

Granular material can also be described by a continuum model in an average sense. In
the continuum description, the macroscopic behavior of granular flow is described by the bal-
ance equations facilitated with constitutive relations and boundary conditions. In the past,
two continuum models developed within the framework of plasticity theory and kinetic theory
of molecular dynamics have extensively been used to study the dynamic behavior of granular
materials [10,11], [12, pp. 1–46], [13, Chapters 6, 7, 9]. They have been shown to be applicable



308 H.P. Zhu and A.B. Yu

to quasi-static and rapid flow regimes, respectively. However, they do not satisfactorily apply
to a system in which different flow regimes coexist such as hopper flow. An alternative
approach is the combined approach of a discrete method and an averaging method, which
takes into account the discrete nature of granular materials without any global assumption,
thus allowing a better understanding of the fundamental mechanisms of granular flow [14–
17]. In the approach, supported by a proper averaging method, the macroscopic quantities,
such as density, velocity and stress can be obtained in terms of the microscopic quantities,
such as velocities of particles and interaction forces and torques between particles.

In this paper, the three-dimensional granular flow in a cylindrical hopper with flat bot-
tom is investigated with a modified DEM and an averaging method. The modified DEM and
the averaging method used in this work are first briefly described. The microscopic properties
directly related to the velocity and forces of particles in the hopper flow are then examined.
Finally, the macroscopic properties, such as velocity, mass density, stress and couple stress
are investigated. The proper use of the weighting function in the averaging method is also
discussed.

2. Mathematical models

2.1. Discrete-element method

In the DEM simulation, a granular material is modeled based on a finite number of discrete,
semi-rigid spherical or polygon-shaped particles interacting by means of contact or non-con-
tact forces, and the translational and rotational motions of every single particle in a consid-
ered system are described by Newton’s laws of motion. For simplicity, our present study is
limited to granular systems only composed of spherical particles, in which the effect of inter-
stitial fluid and non-contact forces, such as the van der Waals and electrostatic forces, can be
ignored. Therefore, the governing equations for translational and rotational motion of particle
i can be given by

mi

dvi

dt
=

∑

j

fij +mig, (1)

Ii

dωi

dt
=

∑

j

mij , (2)

where vi , ωi are, respectively, the translational and angular velocities of particle i with mass
mi and moment of inertia Ii . The forces involved are the gravitational force, mig, and interac-
tion force fij between particles due to the plastic and elastic deformation resulting from par-
ticle collision, sliding and rolling. Further, mij is the torque acting on particle i by particle j

arising from their interaction.
In general, the total interaction force between particles i and j , fij , can be expressed as

a normal component, fn
ij , and a tangential one, f t

ij . Various approaches have been proposed
to model fn

ij and f t
ij . One of the most popular force models was developed based on the

consideration of contact elastic force and viscous contact damping force [4,7–9]. The normal
force includes elastic and damping components, whilst the tangential force includes frictional
and damping components. The normal elastic force, fne

ij , described by the Hertz theory [18,
pp. 84–106], can be given by

fne
ij = 4

3
E∗

i

√
R∗

ij

(
δn
ij

)3/2
nij , (3)
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where E∗
i and R∗

ij are the reduced modulus of elasticity and particle radius, δn
ij is the rela-

tive normal displacement at contact, and nij is the unit contact vector. E∗
i , R∗

ij , δn
ij and nij ,

are, respectively, given by E∗
i =Ei/

[
2(1−ν2

i )
]
, R∗

ij = (
RiRj

)
/
(
Ri +Rj

)
, δn

ij =Ri +Rj − ∣∣rj − ri

∣∣,
and nij = (ri − rj )/

∣∣ri − rj

∣∣, where Ei and νi are the modulus of elasticity and Poisson’s ratio
of particle i; Ri and Rj are the radii of particles i and j , and ri and rj are the position vec-
tors of particles i and j . The normal damping force, fnd

ij , which is modeled as a dashpot that
dissipates a proportion of the relative kinetic energy, is given by

fnd
ij =−cn

ij

(
8mijE

∗
i

√
R∗

ij δ
n
ij

)1/2 (
vij ·nij

)
nij , (4)

where cn
ij is the normal damping coefficient, vij is the relative velocity of particles i and j at

contact, given by vij = vi − vj +ωi × Cij −ωj × Cji , vi and vj are the velocities of particle i

and j , and Cij is a vector from the mass center of the particle to the contact point.
The frictional component of the tangential force is given by

f te
ij =−µij

∣∣∣fne
ij

∣∣∣
(

1−
(

1−min
(∣∣∣vt

ij

∣∣∣ , δmax
ij

)
/δmax

ij

)3/2
)

v̂t
ij , (5)

where µij is the sliding friction coefficient between particles i and j , v̂t
ij = vt

ij /|vt
ij |, vt

ij is
the vector of the relative tangential displacement of particles i and j , and δmax

ij is the rela-
tive tangential displacement when the sliding starts, given by δmax

ij =µij δ
n
ij (2−νi)/[2(1−νi)].

Equation (5) suggests that the friction is described by the theory proposed by Mindlin and
Deresiewicz [19] prior to the sliding (i.e., when |vt

ij |<δmax
ij ) and the Coulomb friction model

when the particles at contact start to slide relatively. The tangential damping force is given by

f td
ij =2ct

ij

(
1·5µijmij

∣∣∣fne
ij

∣∣∣
√

1−|vt
ij |/δmax

ij /δmax
ij

)1/2
(vij ×nij )×nij , (6)

where ct
ij is the tangential damping coefficient. Note that (6) implies that, when sliding occurs,

there is no contribution of the tangential damping to the tangential force.
In general, the contact between two spheres is not at a single point but is a finite area

due to the deformation of both spheres. The inter-particle forces act over the contact region
between particles i and j , rather than the mass center of the particle, and they will generate
a torque, mij . The torque mij causing particle i to rotate is contributed by the tangential and
normal components of the traction distribution, mt

ij and mn
ij , respectively. Implemented in a

discrete simulation, mt
ij is usually expressed as

mt
ij =Cij × f t

ij . (7)

For many inelastic bodies such as viscoelastic particles, the normal traction distribution on
the contact area between two contacting particles is asymmetrical due to the relative rotation
of particles. The asymmetry leads to a non-zero torque, mn

ij , given by

mn
ij =−min

{
µr,ij

∣∣∣fn
ij

∣∣∣ ,µ′
r,ij

∣∣∣ωn
ij

∣∣∣
}

ω̂n
ij , (8)

where µr,ij is the rolling friction coefficient, µ′
r,ij is the rotational stiffness and ω̂n

ij =ωn
ij /|ωn

ij |,
ωn

ij is the component of the vector of the relative angular velocity of particles i and j in their
contact plane. The vector mn

ij is often referred to as the rolling friction torque which provides
a resistance to relative rolling motion between particles [20–22].
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2.2. Averaging method

By use of a proper averaging procedure, the discrete system considered above can be trans-
ferred into a corresponding continuum system. Assume that the mass density ρ, the velocity
u, the angular velocity ω are respectively

ρ =
∫

Tt

∑

i

himids, (9)

u = 1
ρ

∫

Tt

∑

i

himivids, (10)

ω= 1
λ

∫

Tt

∑

i

hiIiωids, (11)

where hi = h(ri − r, s − t), h = h(r, t) is the weighting function, which is positive in the lim-
ited domain �= {

(r,t)
∣∣r ∈�p ⊂R3, t ∈Tt ⊂R

}
and zero otherwise. The variables r and t are,

respectively, the position vector and time to which the average value of the considered quan-
tities is assigned, and λ=∫

Tt

∑
i

hiIids. Differentiating ρ, ρu and λω by use of Equations (1),

(2), (9–11), we can obtain the balance equations of mass and linear momentum and angular
momentum of the continuum system, respectively given by [16,17]

D(ρ)+ρ∇ ·u =0, (12)

D(ρu)+ρu∇ ·u =∇ ·T+ρg, (13)

D(λω)+λω∇ ·u =∇ ·M +M′, (14)

where D(·) represents the material derivative of a tensor. Further, T is the stress tensor, M is
the couple-stress tensor, and M′ is the rate of supply of internal spin to particles, respectively
given by

T=−
∫

Tt

∑

i

himiv′
i ⊗ v′

ids +
∫

Tt

∑

i

∑

j>i

gij dij ⊗ fij ds, (15)

M =−
∫

Tt

∑

i

hiIiv′
i ⊗ωids + 1

2

∫

Tt

∑

i

∑

j>i

gij dij ⊗ (mij −mji)ds, (16)

M′ = 1
2

∫

Tt

∑

i

∑

j>i

(mij +mji)(hi +hj )ds (17)

where v′
i =vi −u is the fluctuant velocity of particle i with respect to the average velocity, dij is

the part of the branch vector connecting the mass centers of particles i and j within domain
�p; gij is the weighting coefficient determined by the weighting function h(r, t), given by gij =∫ 1

0 h(r̄i + rdij − r, s − t)dr, r̄i = ri if ri − r∈�p; otherwise, r̄i is the position vector of the point
of intersection of vector dij and boundary ∂�p of domain �p.

A particle may collide with a wall. Therefore, the interaction between particles and walls
should be included in the continuum description. The contribution of the interaction between
particles and walls to stress and couple stress can be given by

Tb =
∫

Tt

∑

i

gb
i db

i ⊗ fb
i ds, (18)
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and

Mb =
∫

Tt

∑

i

gb
i db

i ⊗mb
i ds, (19)

where db
i is the ray from the center of mass of particle i to boundary ∂�p of domain �p, via

a point on the wall and perpendicular to the tangential plane of the point; gb
i is the weight-

ing coefficient corresponding to walls, given by gb
i = ∫ 1

0 g(ri + rdb
i − r, s − t)dr. Equations (9–

11), (15–19) give the relationship between microscopic and macroscopic quantities of granular
materials.

The microscopic dynamic behavior of granular flows is often described in Cartesian coor-
dinates in DEM simulation. However, for granular flows with a geometry such as a cylindrical
hopper, it is more convenient to describe their macroscopic dynamic behavior in orthogonal
curvilinear coordinates. Therefore, it is necessary to determine the transformation between the
variables under the two coordinates. For this reason, let

{
xi

}
be the Cartesian coordinates of

the three-dimensional Euclidian space R3,
{
yi

}
(yi = yi(x1, x2, x3), i = 1,2,3) be the orthog-

onal curvilinear coordinates in this space, u, ω, T and M be the coordinates of the macro-
scopic quantities u, ω, T and M of granular matter under

{
xi

}
, and ū, ω̄, T̄ and M̄ be the

coordinates under
{
yi

}
. It can be readily obtained that

ū=uA, ω̄=ωA, T̄ =ATT A, M̄ =ATMA. (20)

where A = (
∂yi/∂xj

)
Ḡ, Ḡ is 3×3 matrix whose components are

√
gij (i, j = 1,2,3), gii = e′

i ·
e′
i = (∂x1/∂yi)2 + (∂x2/∂yi)2 + (∂x3/∂yi)2(i = 1,2,3), and gij = 0 if i �= j . Equation (20) gives

the expressions of u, ω, T and M under the orthogonal curvilinear coordinates
{
yi

}
.

Cylindrical coordinates are special orthogonal curvilinear coordinates. Assuming that
{r, θ, z} is the cylindrical coordinates, we observe that there exists a relationship between cylin-
drical and Cartesian coordinates, namely

x1 = r cos θ, x2 = r sin θ, x3 = z. (21)

It can be obtained that

A=



cos θ − sin θ 0
sin θ cos θ 0
0 0 1



 . (22)

Therefore, by use of (20) and (22), the expressions of u, ω, T and M under the cylindrical
coordinates can be readily obtained. Note that the mass density is independent of the coor-
dinate transformation, as it is a scalar.

3. Results and discussion

3.1. Simulation conditions and measurement strategy

To generate results that can be directly compared with those under steady-state flow condi-
tions, the geometry of the hopper used in this work is similar to that in our previous work [9].
It is cylindrical in shape, of diameter of 20d (d is the maximum particle diameter) and with a
circular orifice of diameter of 8d at the center of its flat bottom. Twenty-four thousand multi-
sized spherical particles of uniform size distribution in a range of 0·8 − 1·0d are considered.
Other physical parameters for particles and wall are as follows. Young’s modulus and Pois-
son ratio of particles are set to 50000πρpdg/6 (ρp is the mass density of particle, and g is
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the gravitational acceleration) and 0·3, respectively. The sliding and rolling friction coefficients
between particles are set to 0·6 and 0·001d, respectively. The normal and tangential damping
coefficients are set to 0·3. The wall is assumed to have the same properties as the particles,
except the sliding friction coefficient, which is 0·5. The time step used is 0·001

√
d/g.

The microscopic properties of granular flows can be generated by means of the DEM sim-
ulation, whereas their macroscopic properties can be obtained by use of the micro-dynamic
information generated and the average method described above. In this work, the microscopic
quantities of the hopper flow, including velocity field and force structure, are analyzed in
Cartesian coordinates {x, y, z} fixed at the center of the orifice of the hopper with z-axis at the
central axis of the hopper. The values of the macroscopic quantities, such as density, velocity,
stress and couple stress at the probe point far from the bottom and vertical walls (larger than
4d) in the coordinates, are calculated by use of Equations (9), (10), (15) and (16), whereas
those at the probe point adjacent to the walls by use of Equations (18) and (19) in addition to
these equations. Since the resulting macroscopic variables should be reasonably axially sym-
metric, consistent with the practical treatment [23, pp. 298–372], all computed macroscopic
quantities are averaged from the values of two symmetrical points and shown as a function
of radius r and height z in cylindrical coordinates. The cylindrical coordinates {r, θ, z} starts
at the center of the orifice of the hopper. The velocity, v, mass density, ρ, three independent
components of planer stress, Tzz, Trr and Trz, and two dominant components of couple stress,
Mrθ and Mzθ , have been investigated in this coordinate system. Their magnitudes are obtained
by means of Equations (20) and (22).

3.2. Microscopic analysis

In the DEM simulation, the particles with random initial velocities are first allowed to grad-
ually settle onto the hopper under gravity, giving a packing with height of about 47d. These
particles are then discharged when the hopper outlet is removed, as shown in Figure 1. Three
distinct flow patterns are observed. In the upper part, particles flow downward layer by layer
except those very near the vertical walls due to the sliding resistance by the walls. In the lower
part, particles flow in a V-shape and are discharged except for a small number of particles
staying at the bottom corner of the hopper.

The present microscopic analysis is focused on two key aspects: the velocity field and force
structure. Since the trajectories of and contact forces acting on individual particles are traced
in a DEM simulation, information for such analysis can be readily established. Figure 2

Figure 1. Discharging process of the hopper flow, represented by particles in the central vertical section at different
times.
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Figure 2. Velocity profiles at different times for particles in the central vertical section.

shows the velocity fields in a vertical mid-section of the hopper at t = 60
√

d/g (time of dis-
charge), t =120

√
d/g, t =180

√
d/g and t =240

√
d/g, where each vector represents the compo-

nents of the velocity of a particle in a section as long as its center is located between ±0·5d

of the position of the section. It can be seen that, in the upper part, the velocity in the ver-
tical direction dominates and is almost uniform across the hopper, except for a narrow shear
zone adjacent to the vertical wall. In the lower part, the particles have much larger velocities
at the orifice and very low velocities around the bottom corner of the hopper. Large velocities
in the radial direction concentrate at the two sides of the orifice. These results are qualitatively
consistent with the previous experimental and numerical observations for such a hopper flow
[23–25], [26, pp. 298–372]. That is, there are four different zones: a stagnant zone at the bot-
tom corner of the hopper, a plug flow zone in the upper part, a converging-flow zone in the
lower part, and a transition zone from plug flow to converging flow. Moreover, the plug-flow
zone is observed to reduce with the discharge of particles, whereas the converging flow zone
varies little before t = 180

√
d/g and then reduces with the discharge of the particles in this

zone. The flow regimes can be more clearly shown in terms of the distribution of the aver-
aged velocity in the section on macroscopic analysis.

The force structure is another important local characteristic of granular matter. It has
been used to depict the flow structure, force transmission and other dynamic behavior of
particles [4,5,7,9]. Figure 3 shows the force network in the vertical mid-section at different
times, where the thickness of each stick connecting two particle centers is proportional to

Figure 3. Force networks at different times for particles in the central vertical section.
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the magnitude of the force. The normal contact force is probably the most important, as the
contact tangential force is related to it and is relatively small. Therefore, only the normal force
is included in this figure. Note that the present analysis is focused on the relative values of the
contact forces for a given time; different scales have been used for different times for better
illustration of the flow and force structures. It can be observed that, similar to the steady-state
hopper flow [9], large forces are exerted on the particles at the bottom and vertical walls to
support the particles in the top part. The forces gradually propagate from the walls into the
particle bed. Relatively large forces are also observed in the middle height of the flow, which
corresponds to the transition from plug flow to converging flow in the hopper flow. In the
orifice region, the forces are very small and the force chains are broken. A force chain means
a connection between particles which confines the relative movement between particles. The
breakage of force chains may imply the relative movements between the particles. Therefore,
the flow and force structures are related. These characteristics do not change with time.

3.3. Macroscopic analysis

The DEM results can be used to calculate the macroscopic variables such as mass density,
velocity, stress and couple stress according to (9), (10), (15) and (16). However, strictly speak-
ing, these macroscopic quantities depend on the weighting function h(r, s). Therefore, the
selection of a proper weighting function is important in applying the equations formulated
above. The need to find a suitable weighting function has been noticed; a weighting function
has been recommended, and given by [17]

h(r, s)=f (s)g(s̄), (23)

where s̄ =|r|, and f (s) is the simplified SB distribution function [27], whilst g(s̄) is an exten-
sion of the univariate distribution to three variants. They can be explicitly written as

f (s)=
{

1√
2π

2Lt

(L2
t −s2)

exp
(
− 1

2 log2 Lt+s
Lt−s

)
, |s|<Lt

0, |s|≥Lt

, (24)

g(s̄)=
{

c

4πLp(L2
p−s̄2)

exp
(
− 1

2 log2 Lp+s̄

Lp−s̄

)
, s̄ <Lp

0, s̄ ≥Lp

, (25)

where Lt and Lp are the distribution parameters, c is the normalized constant of the distribu-
tion function g(s̄). The functions f (s) and g(s̄) are smooth in the entire space, and decrease
monotonically with increasing s and s̄, respectively.

Parameter Lp or Lt in the weighting function (23) determines the amount of the contrib-
uting particles to a probe point or time, and the magnitude of contribution of every parti-
cle as well, as illustrated in Figure 4. The specification of appropriate values of Lp and Lt

is a significant part of the application of the averaging method described above. In fact, as
shown in Figures 5 and 6, Lp and Lt do not affect the trend of the distribution of velocity
and stress (only the vertical velocity and the trace of the stress tensor are shown, since the
other components of velocity and stress lead to the same conclusion). However, if Lp and
Lt are too small, the resulting macroscopic quantities fluctuate, giving unreasonable average
results. On the other hand, if they are too large, the local properties of these quantities may
be eliminated. The results in Figures 5 and 6 suggest that, to balance the friction, we can
choose Lp =4·0d and Lt =4·0√

d/g. Such a selection can ensure that the averaged quantities
smoothly vary in a considered domain and retain the local properties of these quantities as
much as possible. The results below were all obtained with these two values.
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Figure 4. Variation of the weighting function with parameter Lp and Lt : (a) function f (s) and (b) function g(s̄).
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Figure 5. Effect of the parameters in the weighting function on vertical velocity vz: (a) the variation of vz with time
t for different Lt when Lp =4·0d for a probing point located at r=0 and z=12·0d and (b) the variation of vz with
radius r for different Lp when Lt =4·0√

d/g and t =50
√

d/g at height z=12·0d.
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Figure 6. Effect of the parameters in the weighting function on the trace of stress tensor tr(T): (a) the variation of
tr(T) with time t for different Lt when Lp = 4·0d for a probing point located at r = 0 and z = 12·0d; and (b) the
variation of tr(T) with radius r for different Lp when Lt =4·0√

d/g and t =50
√

d/g at height z=12·0d.

Figure 7 shows the mass density or bulk density profiles at t =60
√

d/g, t =120
√

d/g and
t =180

√
d/g. It can be seen that the mass density is lowest at the orifice and increases away

from the orifice in the lower part. The magnitude of mass density in this part does not change
much with time. In the upper part, the mass density is almost constant in the central region
and, because of the dilatancy that takes place during shearing, decreases with the distance
to the axis of the hopper in the region close to the wall. The magnitude of mass density in
the central upper part decreases with the discharge of particles. Figure 8 shows the velocity
profiles of the hopper flow in the vertical mid-section of the hopper at different times. As
expected, the distributions are in agreement with the micro-dynamic analysis as above.

Theoretically, the stress contains two parts: a kinetic contribution related to the transport
of particles and a collisional contribution related to the interaction force between particles
and between particles and walls. For hopper flow, the stress is attributed mainly to collisions



316 H.P. Zhu and A.B. Yu

Figure 7. Contour plots of mass density of the unsteady-state hopper flow at different times (the units for mass
density are πρp/6).

Figure 8. Velocity fields of the unsteady-state hopper flow at different times.

between the particles and between particles and walls. It is related to the magnitude and
direction of the interaction forces. However, close to the orifice, the transport of particles may
also play a role. To ensure the accuracy of the stress distribution, the two contributions are
included in the present calculation. Figure 9 shows the radial distribution of the three com-
ponents of the stress tensor, that is, two normal stress, Tzz and Trr , and a shear stress, Trz.
Another shear stress, Tzr , has a similar distribution to Trz in the whole domain except in a
small region adjacent to the walls, which is not shown for brevity. The results indicate that the
distributions of these stresses are similar to those of steady-state hopper flow [28], and have
similar trends for different times. It can be observed from Figures 9 (a) and (b) that the two
normal stresses are low in a region close to the orifice, and large in a region near the bottom
corner. In the upper part, the two stresses vary little in the central section but vary some-
what near the wall. Furthermore, the two normal stresses in this upper part are almost the
same in the central region, but not so in a region adjacent to the wall. The magnitude of the
radial normal stress Trr is large as well in the middle height in the vertical direction, which is,
as expected, in accordance with the force network in Figure 3. As shown in Figure 9(c), the
shear stress has its largest magnitude in a region close to the vertical wall and decreases away
from this region. In the regions adjacent to the bottom wall and central axis of the hopper,
the shear stress is very low. The magnitudes of the two normal stresses vary little with time in
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Figure 9. Contour plots of the distribution of stress of the unsteady state hopper flow at different times (the units
for stress are πρpdg/6): (a) Tzz; (b) Trr and (c) Trz.

the orifice region, but decrease in other regions. The magnitude of the shear stress decreases
with time at locations far from the bottom wall and central axis of the hopper.

For steady-state hopper flow, the most dominant components in the couple stress are Mrθ

adjacent to the vertical wall of the hopper and Mzθ close to the bottom wall [28]. This phe-
nomenon has also been observed in the present simulation of unsteady-state hopper flow,
as shown in Figure 10, where the distributions of the two dominant components at differ-
ent times are given. In general, the couple stresses at points far from a wall result from the
transport of particles and the collisions between particles. Close enough to the wall they will
also be affected by the collisions between particles and wall. The observed sharp increase of
the magnitudes of Mrθ and Mzθ in Figure 10 can be attributed to the effect of the vertical
and bottom walls. The fluctuation of the couple stress far from the walls results mainly from
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Figure 10. Contour plots of the distribution of couple stress of the unsteady-state hopper flow at different times
(the units for couple stress are πρpd2g/6): (a) Mrθ and (b) Mzθ .

collisions between particles. The width or height of the region with a large magnitude of Mrθ

or Mzθ is almost the same for different times, that is 4d for Mrθ and 2d for Mzθ . These facts
indicate that the couple stress related to the gradient of particle rotation should be considered
when the effect of walls is included, which highlights the complexity of the macro-dynamic
analysis of granular flow adjacent to physical boundaries.

4. Conclusions

A numerical investigation of the micro- and macro-dynamic behavior of the unsteady-state
granular flow in a cylindrical hopper with flat bottom has been carried out by means of a
modified DEM and an averaging method. It has been found that there are four distinct flow
zones in the hopper: stagnant, plug flow, converging flow and transition zone from plug flow
to converging flow. The plug flow zone reduces with time, while the converging flow zone var-
ies little and then reduces with the discharge of the particles from this zone. Force arching in
the flow is strong and related to the flow structure of particles. The trends of the distributions
of the macroscopic properties, such as the velocity, mass density, stress and couple stress of
the hopper flow, are similar to those of steady-state hopper flow. They do not vary much with
time. However, the magnitudes of these properties in different regions vary at different rates.
In particular, the magnitudes of the two normal stresses vary little with time in the orifice
region, but decrease in other regions; the magnitude of the shear stress decreases with dis-
charge of particles when far from the bottom wall and central axis of the hopper, and the
width or height of the region with a large magnitude of Mrθ or Mzθ is almost the same for
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different times. These results about macroscopic properties should be useful in formulating
and testing continuum models of hopper flow.
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